Even-cycle decompositions of graphs with no odd-K4-minor

نویسندگان

  • Tony Huynh
  • Sang-il Oum
  • Maryam Verdian-Rizi
چکیده

An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that ‘odd-K4-minor-free’ cannot be replaced with ‘odd-K5-minor-free.’ The main technical ingredient is a structural characterization of the class of odd-K4-minor-free graphs, which is due to Lovász, Seymour, Schrijver, and Truemper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homomorphism bounds and edge-colourings of K4-minor-free graphs

We present a necessary and sufficient condition for a graph of odd-girth 2k + 1 to bound the class of K4-minor-free graphs of odd-girth (at least) 2k + 1, that is, to admit a homomorphism from any such K4-minor-free graph. This yields a polynomial-time algorithm to recognize such bounds. Using this condition, we first prove that every K4-minor free graph of odd-girth 2k+1 admits a homomorphism ...

متن کامل

Toughness threshold for the existence of 2-walks in K4-minor-free graphs

We show that every K4-minor free graph with toughness greater than 4/7 has a 2-walk, i.e., a closed walk visiting each vertex at most twice. We also give an example of a 4/7-tough K4-minor free graph with no 2-walk.

متن کامل

Minors and Strong Products

Let G H and G2H denote, respectively, the strong and Cartesian products of graphs G and H . (We recall that K2 K2 is the complete graph K4 on four vertices, while K22K2 is a four-cycle C4.) Using a simple construction, we show that, for every bipartite G, the graph G K2 is a minor of the graph G2C4. In particular, the d-cube Qd has a complete minor on 2 (d+1)/2 vertices if d is odd, and on 3 · ...

متن کامل

Skolem Odd Difference Mean Graphs

In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...

متن کامل

K4-free graphs with no odd holes

All K4-free graphs with no odd hole and no odd antihole are three-colourable, but what about K4free graphs with no odd hole? They are not necessarily three-colourable, but we prove a conjecture of Ding that they are all four-colourable. This is a consequence of a decomposition theorem for such graphs; we prove that every such graph either has no odd antihole, or belongs to one of two explicitly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2017